Antes de existir el lenguaje escrito, el hombre primitivo se comunicaba con sus semejantes gesticulando palabras o sonidos, este medio de lenguaje audible se fue perfeccionando al cabo de miles de años de su continuo uso, hasta llegar a la palabra hablada. Cuando éste deseaba recordar un hecho o transmitir un acontecimiento a sus congéneres, les comunicaba sus ideas por medio de la pictografía. Esta consistía en representar por medio de objetos lo que se deseaba expresar ayudado del dibujo o la pintura, de esta manera el hombre inventó su primera forma de comunicación no hablada, la escritura pictográfica.
Los sistemas de númeración en la antiguedad.
Aunque se carece de información fidedigna acerca de la forma como el hombre primitivo empezó a valerse de un sistema numérico, tuvo muchas razones y situaciones cotidianas que lo impulsaron a tratar de cuantificar todo lo que le rodeaba. En su etapa sedentaria se vio forzado a emplear algún método de conteo, ya fuera para saber cuantas cabezas de ganado u ovejas poseía; como también para conocer el número de armas que tenía, o para cuantificar la extensión de los terrenos sembrados o conquistados.
De esta manera el hombre descubrió el primer sistema de matemáticas aplicadas, que luego los matemáticos definirían como una correspondencia biunívoca entre dos órdenes.
También cuando éste se dedicó a la agricultura, tuvo que idear un sistema para medir el tiempo en las épocas de siembra y cosecha, finalmente en su etapa de comerciante, necesitó crear un sistema para fijar el peso, volumen y el valor de sus productos para intercambiarlos con los pueblos vecinos.
Formas de conteo primitivo.
Al tener el hombre antiguo un sistema base de medida, se vio en la necesidad de cuantificar las medidas en su modo base de contar, esta operación la llevó a cabo, por ejemplo, utilizando un sistema de rayas rasgadas en las paredes o pintadas en papiro.
Otro método era haciendo marcas en los troncos de los árboles o cortes sobre una vara para llevar un registro permanente de las cosas. Cada pueblo o tribu tuvo que inventar sus propias palabras y signos para representar sus operaciones de conteos realizados, con el comercio los antiguos mercaderes estaban obligados a saber una gran variedad de sistemas de medidas y numeración, a fin de poder comerciar con los diferentes pueblos o tribus.
Para llegar a la concepción e invención de un sistema numérico, fueron necesarios muchos miles de años antes que el hombre concibiera la idea del número, la invención de un sistema numérico es quizá una de las mayores invenciones del hombre antiguo. Dentro de estos sistemas se encuentran los aditivos, los híbridos y los posicionales.
Sistemas de Numeracion Aditivos
Para ver cómo es la forma de representación aditiva consideremos el sistema geroglífico egipcio. Por cada unidad se escribe un trazo vertical, por cada decena un símbolo en forma de arco y por cada centena, millar, decena y centena de millar y millón un geroglífico específico. Así para escribir 754 usaban 7 geroglíficos de centenas 5 de decenas y 4 trazos. De alguna forma todas las unidades están fisicamente presentes.
Los sistemas aditivos son aquellos que acumulan los simbolos de todas las unidades, decenas... como sean necesarios hasta completar el número. Una de sus características es por tanto que se pueden poner los símbolos en cualquier orden, aunque en general se ha preferido una determinada disposición.
Han sido de este tipo las numeraciones egipcia, sumeria (de base 60), hitita, cretense, azteca (de base 20), romana y las alfabéticas de los griegos, armenios, judios y árabes.
El Sistema de Numeración Egipcio
Desde el tercer milenio A.C. los egipcios usaron un sistema deescribir los números en base diez utilizando los geroglíficos de la figura para representar los distintos ordenes de unidades.
Se usaban tantos de cada uno cómo fuera necesario y se podian escribir indistintamente de izquierda a derecha, al revés o de arriba abajo, cambiando la orientación de las figuras según el caso.
Al ser indiferente el orden se escribían a veces según criterios estéticos, y solían ir acompañados de los geroglíficos correspondientes al tipo de objeto (animales, prisioneros, vasijas etc.) cuyo número indicaban. En la figura aparece el 276 tal y como figura en una estela en Karnak.
Estos signos fueron utilizados hasta la incorporación de Egipto al imperio romano. Pero su uso quedó reservado a las inscripciones monumentales, en el uso diario fue sustituido por la escritura hierática y demótica, formas más simples que permitian mayor rapidez y comodidad a los escribas.
En estos sistemas de escritura los grupos de signos adquirieron una forma propia, y asi se introdujeron símbolos particulares para 20, 30....90....200, 300.....900, 2000, 3000...... con lo que disminuye el número de signos necesarios para escribir una cifra.
El Sistema de Numeración Griego
El primer sitema de numeración griego se desarrolló hacia el 600 A.C. Era un sistema de base decimal que usaba los símbolos de la figura siguiente para representar esas cantidades. Se utilizaban tantas de ellas como fuera necesario según el principio de las numeraciones aditivas.
Los símbolos de 50, 500 y 5000 se obtienen añadiendo el signo de 10, 100 y 1000 al de 5, usando un principio multiplicativo. Progresivamente este sistema ático fue reemplazado por el jónico, que empleaba las 24 letras del alfabeto griego junto con algunos otros símbolos según la tabla siguiente.
De esta forma los números parecen palabras, ya que están compuestos por letras, y a su vez las palabras tienen un valor numérico, basta sumar las cifras que corresponden a las letras que las componen. Esta circunstancia hizo aparecer una nueva suerte de disciplina mágica que estudiaba la relación entre los números y las palabras. En algunas sociedades como la judía y la árabe, que utilizaban un sistema similar, el estudio de esta relación ha tenido una gran importancia y ha constituido una disciplina aparte: la kábala, que persigue fines místicos y adivinatorios.
Sistemas de Numeracion Híbridos
En estos sistemas se combina el principio aditivo con el multiplicativo. Si para representar 500 los sistemas aditivos recurren a cinco representaciones de 100, los híbridos utilizan la combinación del 5 y el 100. Pero siguen acumulando estas combinaciones de signos para los números más complejos. Por lo tanto sigue siendo innecesario un símbolo para el 0. Para representar el 703 se usa la combinacion del 7 y el 100 seguida del 3.
El orden en la escritura de las cifras es ahora fundamental para evitar confusiones, se dan así los pasos para llegar al sistema posicional, ya que si los signos del 10, 100 etc se repiten siempre en los mismos lugares, pronto alguien piensa en suprimirlos, dándolos por supuestos y se escriben sólo las cifras correspondientes a las decenas, centenas etc. Pero para ello es necesario un cero, algo que indique que algún orden de magnitud está vacío y no se confundan el 307 con 370, 3070 ...
Además del chino clásico han sido sistemas de este tipo el asirio, arameo, etíope y algunos del subcontinente indio cómo el tamil, el malayalam y el cingalés.
El Sistema de Numeración Chino
La forma clásica de escritura de los números en China se empezó a usar desde el 1500 A.C. aproximadamente. Es un sistema decimal estricto que usa las unidades y los distintas potencias de 10. Utiliza los ideogramas de la figura:
y usa la combinación de los números hasta el diez con la decena, centena, millar y decena de millar para según el principio multiplicativo representar 50, 700 ó 3000. El orden de escritura se hace fundamental,ya que 5 10 7 igual podría representar 57 que 75.
Tradicionalmente se ha escrito de arriba abajo aunque también se hace de izquierda a derecha como en el ejemplo de la figura. No es necesario un símbolo para el cero siempre y cuando se pongan todos los ideogramas, pero aún así a veces se
suprimían los correspondientes a las potencias de 10.
Aparte de esta forma que podríamos llamar canónica se usaron otras. Para los documento importantes se usaba una grafía más complicada con objeto de evitar falsificaciones y errores. En los sellos se escribía de forma más estilizada y lineal y aún se usaban hasta dos grafías diferentes en usos domésticos y comerciales, aparte de las variantes regionales. Los eruditos chinos por su parte desarrollaron un sistema posicional muy parecido al actual que desde que incorporó el cero por influencia india en s. VIII en nada se diferencia de este.
Sistemas de Numeración Posicionales
Mucho más efectivos que los sitemas anteriores son los posicionales. En ellos la posición de una cifra nos dice si son decenas, centenas ... o en general la potencia de la base correspondiente.
Sólo tres culturas además de la india lograron desarrollar un sistema de este tipo. Babilonios, chinos y mayas en distintas épocas llegaron al mismo principio. La ausencia del cero impidió a los chinos un desarrollo completo hasta la intraducción del mismo. Los sistemas babilónico y maya no eran prácticos para operar porque no disponían de simbolos particulares para los dígitos, usando para representarlos una acumulación del signo de la unidad y la decena. El hecho que sus bases fuese 60 y 20 respectivamente no hubiese representado en principio nigún obstáculo. Los mayas por su parte cometían una irregularidad a partir de las unidades de tercer orden, ya que detrás de las veintenas no usaban 20x20=400 sino 20x18=360 para adecuar los números al calendario, una de sus mayores preocupaciones culturales.
Fueron los indios antes del siglo VII los que idearon el sistema tal y como hoy lo conocemos, sin mas que un cambio en la forma en la que escribimos los nueve dígitos y el cero. Aunque con frecuencia nos referimos a nuestro sistema de numeración cómo árabe, las pruebas arqueológicas y documentales demuestran el uso del cero tanto en posiciones intermedias como finales en la India desde el sss. Los árabes transmitieron esta forma de representar los números y sobre todo el cáculo asociado a ellas, aunque tardaron siglos en ser usadas y aceptadas. Una vez más se produjo una gran resistencia a algo por el mero hecho de ser nuevo o ajeno, aunque sus ventajas eran evidentes. Sin esta forma eficaz de numerar y efectuar cálculos dificilmente la ciencia hubiese podido avanzar.
El Sistema de Numeración Babilónico
Entre la muchas civilizaciones que florecieron en la antigua Mesopotamia se desarrollaron distintos sistemas de numeración. En el ssss A.C. se inventó un sistema de base 10, aditivo hasta el 60 y posicional para números superiores.
Para la unidad se usaba la marca vertical que se hacía con el punzón en forma de cuña. Se ponían tantos como fuera preciso hasta llegar a 10, que tenía su propio signo.
De este se usaban los que fuera necesario completando con las unidades hasta llegar a 60.
A partir de ahí se usaba un sistema posicional en el que los grupos de signos iban representando sucesivamente el número de unidades, 60, 60x60, 60x60x60 y asi sucesivamente como en los ejemplos que se acompañan.
El Sistema de Numeración Maya
Los mayas idearon un sistema de base 20 con el 5 cómo base auxiliar. La unidad se representaba por un punto. Dos, tres, y cuatro puntos servían para 2, 3 y 4. El 5 era una raya horizontal, a la que seañadían los puntos necesarios para representar 6, 7, 8 y 9. Para el 10 se usaban dos rayas, y de la misma forma se continúa hasta el 20, con cuatro rayas.
Hasta aquí parece ser un sistema de base 5 aditivo, pero en realidad, considerados cada uno un solo signo, estos símbolos constituyen las cífras de un sistema de base 20, en el que hay que multiplicar el valor de cada cifra por 1, 20, 20x20, 20x20x20 ... según el lugar que ocupe, y sumar el resultado. Es por tanto un sistema posicional que se escribe a arriba abajo, empezando por el orden de magnitud mayor.
Al tener cada cifra un valor relativo según el lugar que ocupa, la presencia de un signo para el cero, con el que indicar la ausencia de unidades de algún orden, se hace imprescindible y los mayas lo usaron, aunque no parece haberles interesado el concepto de cantidad nula. Cómo los babilonios lo usaron simplemente para indicar la ausencia de otro número.
Pero los científicos mayas eran a la vez sacerdotes ocupados en la observación astronómica y para expresar los número correspondientes a las fechas usaron unas unidades de tercer orden irregulares para la base 20. Así la cifra que ocupaba el tercer lugar desde abajo se multiplicaba por 20x18=360 para completar una cifra muy próxima a la duración de un año.
El año lo consideraban dividido en 18 uinal que constaba cada uno de 20 días. Se añadían algunos festivos (uayeb) y de esta forma se conseguía que durara justo lo que una de las unidades de tercer orden del sistema numérico. Además de éste calendario solar, usaron otro de carater religioso en el que el año se divide en 20 ciclos de 13 días.
Al romperse la unidad del sistema éste se hace poco práctico para el cálculo y aunque los conocimiento astronómicos y de otro tipo fueron notables los mayas no desarrollaron una matemática más allá del calendario.
Números en la actualidad
Tipos de números
Los números más conocidos son los números naturales, que se usan para contar. Si añadimos los números negativos obtenemos los enteros. Cocientes de enteros generan los números racionales. Si incluimos todos los números que son expresables con decimales pero no con fracciones de enteros (irracionales), obtenemos los números reales; si a éstos les añadimos los números complejos, tendremos todos los números necesarios para resolver cualquier ecuación algebraica. Podemos ampliar aún más los números, si añadimos los infinitos, hiperreales y transfinitos. Entre los reales, existen números que no son soluciones de una ecuación polinomial o algebraica, que reciben el nombre de transcendentales. Ejemplos famosos de estos números son π (Pi) y el número e (base de los logaritmos naturales) los cuales están relacionados entre sí por la identidad de Euler.
Existe toda una teoría de los números, que clasifica a los números en:
* Números naturales
Número primo
Números compuestos
Números perfectos
* Números enteros
Números pares
Números impares
* Números racionales
* Números reales
Números irracionales
Números algebraicos
Números trascendentes
* Números hiperreales
* Números complejos
* Cuaterniones
* Números infinitos
* Números transfinitos
* Números negativos
* Números fundamentales: π y e
El estudio de ciertas propiedades que cumplen los números ha producido una enorme cantidad de tipos de números, la mayoría sin un interés matemático específico. A continuación se indican algunos:
Narcisista: Número de n dígitos que resulta ser igual a la suma de las potencias de orden n de sus dígitos. Ejemplo: 153 = 1³ + 5³ + 3³.
Omirp: Número primo que al invertir sus dígitos da otro número primo.
Ejemplo : 1597 y 7951 son primos.
Vampiro: Número que se obtiene a partir del producto de dos números obtenidos a partir de sus dígitos. Ejemplo: 2187 = 27 x 81.
Una vez entendido el problema de la naturaleza y la clasificación de los números, surge otro, más práctico, pero que condiciona todo lo que se va a hacer con ellos: la manera de escribirlos. El sistema que se ha impuesto universalmente es la numeración posicional, gracias al invento del cero, con una base constante.
Más Formalmente, en the concept of number, el matemático Frege realiza una definición de «número», la cual fue tomada como referencia por muchos matemáticos (entre ellos Russell Co-creador de principia mathematica.
"n es un número" es entonces la definición de que "existe un concepto F para el cual n aplica", que a su vez se ve explicado como que "n es la extensión del concepto "equinumerable con" para F", y dos conceptos son "equinumerables" si existe una relación "uno a uno" (véase que no se utiliza el símbolo 1 porque no esta definido aún) entre los elementos que lo componen (es decir, una biyección en otros terminos).
Véase también que Frege, tanto como cualquier otro matemático, se ven inhabilitados para definir al número como la expresión de una cantidad, porque la simbología matemática no hace referencia necesaria a la numerabilidad, y el hecho de "cantidad" referiría a algo numerable, mientras que números se adoptan para definir la cardinalidad de, por ejemplo, los elementos que se encuentran en el intervalo abierto (0, 1), que contiene innumerables elementos (potencia del continuo).
Peano, antes de establecer sus cinco proposiciones sobre los números naturales, explicita que supone sabida una definición (quizás debido a su "obviedad" de las palabras o conceptos "cero", "sucesor" y "número". De esta manera postula:
* "0 es un número",
* "el sucesor de todo número es un número",
* "dos números diferentes no tienen el mismo sucesor",
* "0 no es el sucesor de ningún número",
* y la propiedad inductiva.
Sin embargo, si uno define el concepto "cero" como el número 100, y el concepto "número" como "los números mayores a 100", entonces las cinco proposiciones mencionadas anteriormente aplican, no a la idea que Peano habría querido comunicar, sino a su formalización.
La definición de número se encuentra por ende no totalmente formalizada, aunque se encuentre un acuerdo mayoritario en adoptar la definición enunciada por Frege.
Ahora un video para reflexionar sobre los números en nuestras vidas.
Este video lo busque en you tube, parece que es un avance de un programa de televisión o algo por el estilo.
No hay comentarios:
Publicar un comentario